Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Aquachlorobis(4,4', $4^{\prime \prime}$-tri-tert-butyl$2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine- $\kappa^{3} N$)terbium(III) diperchlorate ethanol disolvate

Hans-Ruedi Mürner, ${ }^{\text {a }}$ Rosario Scopelliti ${ }^{\text {b }}$ and Jean-Claude G. Bünzli ${ }^{\text {b* }}$

${ }^{\text {a }}$ Waldweg 21, CH-1717 St. Ursen, Switzerland, and ${ }^{\text {b Ecole Polytechnique Féderale }}$ de Lausanne, Institut de Chimie Moléculaire et Biologique, BCH-LCSL, CH-1015
Lausanne, Switzerland
Correspondence e-mail: jean-claude.bunzli@epfl.ch

Received 7 May 2002
Accepted 5 June 2002
Online 12 July 2002
In the title compound, $\left[\mathrm{TbCl}\left(\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$-$2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, the $\mathrm{Tb}^{\mathrm{III}}$ ion has a coordination number of eight, composed of two tridentate substituted-terpyridine ligands, a water molecule and a bound Cl^{-}anion. The first coordination shell can be described as a distorted bicapped trigonal prism. The dihedral angles between pyridine rings belonging to the same tpy ligand range from 5.2 (5) to 16.8 (5) ${ }^{\circ}$.

Comment

As part of our ongoing research programme on lanthanide coordination compounds (Bünzli et al., 2000), we are interested in the interplay between ligand structure and the photophysical properties of the complexes formed. Progress in these areas over the last two decades has led, for example, to the introduction of several commercially available fluoroimmunoassays based on highly luminescent lanthanide complexes (Hemmilä et al., 1995; Mathis, 1998). We have recently shown (Mürner et al., 2000) that the introduction of simple alkane substituents in the 4 -positions of the parent compound $2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine (tpy) greatly enhances the quantum yields of metal-centred luminescence in complexes with $\mathrm{Eu}^{\mathrm{III}}$ and, particularly, with $\mathrm{Tb}^{\text {III }}$. During our efforts to obtain X-ray quality crystals of the complexes $\left[\operatorname{Ln}\left(L^{1}\right)_{3}\right]$ $\left(\mathrm{ClO}_{4}\right)_{3}$ (where L^{1} is $4,4^{\prime}, 4^{\prime \prime}$-tri-tert-butyl-2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine), we obtained crystals that were comprised of the title compound, $\left[\mathrm{Tb}\left(L^{1}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, (I), instead of the expected tris complex.

Complexes of the types $\left[\operatorname{Ln}(L) X_{3}\right]$ and $\left[\operatorname{Ln}(L)_{3}\right]^{3+}$ (where X is NO_{3}^{-}or a halogenide, and L is tpy or a derivative) have been reported in the literature with essentially all the rare earths. Recent examples are a series of papers by White (Semenova et al., 1999; Semenova \& White, 1999a,b), and work by Drew et al. (2000). Until very recently, only one X-ray structure of a complex in the lanthanide-tpy system displaying a 1:2 metal-to-ligand stoichiometry had been described. The
salt $\left[\mathrm{La}(\text { tpy })_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left[\mathrm{La}(\right.$ tpy $\left.)\left(\mathrm{NO}_{3}\right)_{4}\right]$ contains a cationic species with ten-coordinate $\mathrm{La}^{\text {III }}$ and an anionic species with 11-coordinate La ${ }^{\text {III }}$ (Frechette \& Bensimon, 1995). Structures of the analogous complexes $\left[\mathrm{Ln}(\operatorname{tpy})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left[\mathrm{Ln}(\operatorname{tpy})\left(\mathrm{NO}_{3}\right)_{4}\right]$ (Ln is $\mathrm{Nd}, \mathrm{Sm}, \mathrm{Tb}$, Dy or Ho) have been reported recently (Drew et al., 2000). In these compounds, both the cation and the anion display a coordination number of ten, with one of the four nitrate ligands in the anion binding only in a monodentate fashion. This contrasts with the $\mathrm{La}^{\mathrm{III}}$ structure (Frechette \& Bensimon, 1995), where all four nitrates act as bidentate ligands in the anion.

For the complexes $\left[\mathrm{Ln}(\mathrm{tpy})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left[\mathrm{Ln}(\operatorname{tpy})\left(\mathrm{NO}_{3}\right)_{4}\right](\mathrm{Ln}$ is $\mathrm{La}, \mathrm{Sm}, \mathrm{Dy}$ or Ho), dihedral angles between the pyridine rings of up to 29° were observed. For complexes where Ln is Tb or Nd , on the other hand, both tpy ligands are close to planarity (inter-pyridine angles $<10^{\circ}$). Large deviations from planarity in the ligands were also observed in the structures of $\left[\operatorname{Ln}(\text { tpy })_{3}\right]^{3+}$ complexes (Skelton et al., 1996; Semenova et al., 1999). In contrast, the complex $\left[\mathrm{TbCl}(\operatorname{tpy}) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Kepert et al., 1994) displays dihedral angles of 9.4 and 10.6°. In the title compound, (I), the dihedral angles between pyridine rings in the same molecule of L^{1} vary between 5.2 (5) and $16.8(5)^{\circ}$. We conclude that, overall, the complexed ligand L^{1} displays a nearly planar conformation. The reasons for the distortions in the tpy ligands bound to lanthanide cations remain unclear, especially if one considers the different behaviour displayed by neighbours in the series (e.g. Tb and Dy).

Figure 1
A view of the cation of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

All bond lengths between the central cation and the ligand atoms in (I) are comparable with those in the $\mathrm{Tb}^{\mathrm{III}}$ mono-tpy complex (Kepert et al., 1994). A noteworthy exception is that the bonds between the Tb and the N atoms of the two peripheral pyridine rings are not equal in (I). The observed $\mathrm{Tb}-\mathrm{N}$ bonds are all slightly shorter than in the cation $\left[\mathrm{Tb}(\mathrm{tpy})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}$(Drew et al., 2000), where non-equal bond lengths between $\mathrm{Tb}^{\mathrm{III}}$ and peripheral pyridine N atoms are seen in only one of the tpy molecules. In contrast with other structures of rare earth complexes, (I) displays neither a mono- nor a bidentate binding of the perchlorate anions. Instead, a purely ionic behaviour is observed.

Hydrogen-bonding interactions are observed between the coordinated water and the ethanol solvate. Weaker interactions are apparent between the coordinated Cl and the ethanol solvate, and between perchlorate and $\mathrm{C}-\mathrm{H}$ fragments of the pyridine rings. The coordination polyhedron for $\mathrm{Tb}^{\text {III }}$ can be described as a distorted bicapped trigonal prism (PoraiKoshits \& Aslanov, 1972).

Experimental

The synthesis of and analytical data for the parent compound, $\left[\mathrm{Tb}\left(L^{1}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{3}$, (II), have been described elsewhere (Mürner et al., 2000). Suitable crystals of (I) formed upon slow evaporation of an $\mathrm{MeCN}-\mathrm{EtOH}-$ pentane solution of (II) under non-anhydrous conditions. We attribute the presence of a Cl^{-}counter-ion to the unintentional use of a solvent contaminated with traces of hydrochloric acid.

Crystal data

$\left[\mathrm{TbCl}\left(\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-$
$\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=1306.58$
Monoclinic, $P 2_{1} / c$
$a=14.392$ (3) \AA
$b=21.233$ (4) \AA
$c=22.172$ (4) \AA
$\beta=106.95(3)^{\circ}$
$V=6481(2) \AA^{3}$
$Z=4$
Data collection
MAR345 IPDS diffractometer
φ scans $\left(\Delta \varphi=3^{\circ}\right.$; exposure time 180 s)
34863 measured reflections
10324 independent reflections
5193 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.203$
$S=0.97$
10324 reflections
721 parameters
> $D_{x}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 708 reflections
> $\theta=1.4-12.2^{\circ}$
> $\mu=1.27 \mathrm{~mm}^{-1}$
> $T=143$ (2) K
> Prismatic, colourless
> $0.25 \times 0.20 \times 0.17 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.066 \\
& \theta_{\max }=24.4^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-24 \rightarrow 24 \\
& l=-24 \rightarrow 25
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1083 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.09 \mathrm{e} \AA^{-3}
\end{aligned}
$$

From refinement of the site occupancies, there was evidence that atoms Cl 1 and O 1 were disordered, but a satisfactory disordered model could not be obtained. One EtOH molecule was found to be disordered. A three-component model with isotropic displacement parameters was employed (occupancy factor 0.33 for all atoms). The H atoms of the solvent molecules and coordinated water were omitted. The remaining H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Tb1-O1	$2.383(6)$	Tb1-N1	$2.515(7)$
Tb1-N3	$2.503(7)$	Tb1-N6	$2.531(7)$
Tb1-N4	$2.506(7)$	Tb1-N2	$2.558(8)$
Tb1-N5	$2.510(7)$	Tb1-Cl1	$2.633(3)$
O1-Tb1-N3	$100.6(2)$	$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{N} 6$	$127.9(2)$
O1-Tb1-N4	$142.5(2)$	$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 2$	$75.5(2)$
N3-Tb1-N4	$82.8(2)$	$\mathrm{N} 3-\mathrm{Tb} 1-\mathrm{N} 2$	$128.1(2)$
O1-Tb1-N5	$152.7(2)$	$\mathrm{N} 4-\mathrm{Tb} 1-\mathrm{N} 2$	$131.2(2)$
N3-Tb1-N5	$87.7(2)$	$\mathrm{N} 5-\mathrm{Tb} 1-\mathrm{N} 2$	$78.9(2)$
N4-Tb1-N5	$63.9(2)$	$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{N} 2$	$64.2(2)$
O1-Tb1-N1	$75.6(2)$	$\mathrm{N} 6-\mathrm{Tb} 1-\mathrm{N} 2$	$147.7(2)$
N3-Tb1-N1	$64.8(2)$	$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{Cl} 1$	$85.52(19)$
N4-Tb1-N1	$135.9(2)$	$\mathrm{N} 3-\mathrm{Tb} 1-\mathrm{Cl} 1$	$151.87(17)$
N5-Tb1-N1	$84.8(2)$	$\mathrm{N} 4-\mathrm{Tb} 1-\mathrm{Cl} 1$	$76.22(17)$
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 6$	$79.4(2)$	$\mathrm{N} 5-\mathrm{Tb} 1-\mathrm{Cl} 1$	$99.41(19)$
N3-Tb1-N6	$76.2(2)$	$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{Cl} 1$	$142.61(18)$
N4-Tb1-N6	$65.1(2)$	$\mathrm{N} 6-\mathrm{Tb} 1-\mathrm{Cl} 1$	$78.08(18)$
N5-Tb1-N6	$127.9(2)$	$\mathrm{N} 2-\mathrm{Tb} 1-\mathrm{Cl} 1$	$80.07(18)$

Data collection: MAR345 Software (marresearch, 1999); cell refinement: marHKL (release 1.9.1), based on $H K L$ (Otwinowski \& Minor, 1997); data reduction: marHKL; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997).

We gratefully acknowledge Emilie Chassat and Randolph P. Thummel at the University of Houston, USA, for the donation of a sample of the terpyridine ligand. This work was supported through grants from the Swiss National Science Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1012). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bünzli, J.-C. G., André, N., Elhabiri, M., Muller, G. \& Piguet, C. (2000). J. Alloys Compd, 303-304, 66-74.
Drew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P. V., Enarsson, A., Hill, C. \& Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821-830.
Frechette, M. \& Bensimon, C. (1995). Inorg. Chem. 34, 3520-3527.
Hemmilä, I., Stahlberg, T. \& Mottram, P. (1995). Bioanalytical Applications of Labelling Technologies, edited by P. Mottram, ch. 5. Turku: Wallac Oy.
Kepert, C. J., Weimin, L., Skelton, B. W. \& White, A. H. (1994). Aust. J. Chem. 47, 365-384.
marresearch (1999). MAR345 Software. Release 1.2.11. marresearch Gmbh, Norderstedt, Germany.
Mathis, G. (1998). Rare Earths, edited by R. Saez Puche \& P. Caro, pp. 285297. Madrid: Editorial Complutense.

Mürner, H.-R., Chassat, E., Thummel, R. P. \& Bünzli, J.-C. G. (2000). J. Chem. Soc. Dalton Trans. pp. 2809-2816.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Porai-Koshits, M. A. \& Aslanov, L. A. (1972). J. Struct. Chem. 13, 244-253.
Semenova, L. I., Sobolev, A. N., Skelton, B. W. \& White, A. H. (1999). Aust. J. Chem. 52, 519-529.
Semenova, L. I. \& White, A. H. (1999a). Aust. J. Chem. 52, 507-517.
Semenova, L. I. \& White, A. H. (1999b). Aust. J. Chem. 52, 539-550.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Skelton, B. W., Waters, A. F. \& White, A. H. (1996). Aust. J. Chem. 49, 137-146.

